امضای پیامهای خارج از زنجیره و داشتن قراردادی که قبل از اجرا به آن امضا نیاز دارد
به عنوان مثال از این تکنیک برای موارد زیر استفاده می شود:
تراکنش متا
یک امضا را می توان چندین بار برای اجرای یک تابع استفاده کرد.
پیام ها را با هیچ
و آدرس قرارداد
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
import "./ECDSA.sol";
contract MultiSigWallet {
using ECDSA for bytes32;
address[2] public owners;
constructor(address[2] memory _owners) payable {
owners = _owners;
}
function deposit() external payable {}
function transfer(address _to, uint256 _amount, bytes[2] memory _sigs)
external
{
bytes32 txHash = getTxHash(_to, _amount);
require(_checkSigs(_sigs, txHash), "invalid sig");
(bool sent,) = _to.call{value: _amount}("");
require(sent, "Failed to send Ether");
}
function getTxHash(address _to, uint256 _amount)
public
view
returns (bytes32)
{
return keccak256(abi.encodePacked(_to, _amount));
}
function _checkSigs(bytes[2] memory _sigs, bytes32 _txHash)
private
view
returns (bool)
{
bytes32 ethSignedHash = _txHash.toEthSignedMessageHash();
for (uint256 i = 0; i < _sigs.length; i++) {
address signer = ethSignedHash.recover(_sigs[i]);
bool valid = signer == owners[i];
if (!valid) {
return false;
}
}
return true;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
import "./ECDSA.sol";
contract MultiSigWallet {
using ECDSA for bytes32;
address[2] public owners;
mapping(bytes32 => bool) public executed;
constructor(address[2] memory _owners) payable {
owners = _owners;
}
function deposit() external payable {}
function transfer(
address _to,
uint256 _amount,
uint256 _nonce,
bytes[2] memory _sigs
) external {
bytes32 txHash = getTxHash(_to, _amount, _nonce);
require(!executed[txHash], "tx executed");
require(_checkSigs(_sigs, txHash), "invalid sig");
executed[txHash] = true;
(bool sent,) = _to.call{value: _amount}("");
require(sent, "Failed to send Ether");
}
function getTxHash(address _to, uint256 _amount, uint256 _nonce)
public
view
returns (bytes32)
{
return keccak256(abi.encodePacked(address(this), _to, _amount, _nonce));
}
function _checkSigs(bytes[2] memory _sigs, bytes32 _txHash)
private
view
returns (bool)
{
bytes32 ethSignedHash = _txHash.toEthSignedMessageHash();
for (uint256 i = 0; i < _sigs.length; i++) {
address signer = ethSignedHash.recover(_sigs[i]);
bool valid = signer == owners[i];
if (!valid) {
return false;
}
}
return true;
}
}
/*
// owners
0xe19aea93F6C1dBef6A3776848bE099A7c3253ac8
0xfa854FE5339843b3e9Bfd8554B38BD042A42e340
// to
0xe10422cc61030C8B3dBCD36c7e7e8EC3B527E0Ac
// amount
100
// nonce
0
// tx hash
0x12a095462ebfca27dc4d99feef885bfe58344fb6bb42c3c52a7c0d6836d11448
// signatures
0x120f8ed8f2fa55498f2ef0a22f26e39b9b51ed29cc93fe0ef3ed1756f58fad0c6eb5a1d6f3671f8d5163639fdc40bb8720de6d8f2523077ad6d1138a60923b801c
0xa240a487de1eb5bb971e920cb0677a47ddc6421e38f7b048f8aa88266b2c884a10455a52dc76a203a1a9a953418469f9eec2c59e87201bbc8db0e4d9796935cb1b
*/
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
// OpenZeppelin Contracts (last updated v4.5.0) (utils/cryptography/ECDSA.sol)
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
} else if (error == RecoverError.InvalidSignatureV) {
revert("ECDSA: invalid signature 'v' value");
}
}
function tryRecover(bytes32 hash, bytes memory signature)
internal
pure
returns (address, RecoverError)
{
// Check the signature length
// - case 65: r,s,v signature (standard)
// - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098) _Available since v4.1._
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else if (signature.length == 64) {
bytes32 r;
bytes32 vs;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly {
r := mload(add(signature, 0x20))
vs := mload(add(signature, 0x40))
}
return tryRecover(hash, r, vs);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
function recover(bytes32 hash, bytes memory signature)
internal
pure
returns (address)
{
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs)
internal
pure
returns (address, RecoverError)
{
bytes32 s = vs
& bytes32(
0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
function recover(bytes32 hash, bytes32 r, bytes32 vs)
internal
pure
returns (address)
{
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
internal
pure
returns (address, RecoverError)
{
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (
uint256(s)
> 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0
) {
return (address(0), RecoverError.InvalidSignatureS);
}
if (v != 27 && v != 28) {
return (address(0), RecoverError.InvalidSignatureV);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
internal
pure
returns (address)
{
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
function toEthSignedMessageHash(bytes32 hash)
internal
pure
returns (bytes32)
{
// 32 is the length in bytes of hash,
// enforced by the type signature above
return keccak256(
abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)
);
}
}