محصول ثابت AMM XY = K
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
contract CPAMM {
IERC20 public immutable token0;
IERC20 public immutable token1;
uint256 public reserve0;
uint256 public reserve1;
uint256 public totalSupply;
mapping(address => uint256) public balanceOf;
constructor(address _token0, address _token1) {
token0 = IERC20(_token0);
token1 = IERC20(_token1);
}
function _mint(address _to, uint256 _amount) private {
balanceOf[_to] += _amount;
totalSupply += _amount;
}
function _burn(address _from, uint256 _amount) private {
balanceOf[_from] -= _amount;
totalSupply -= _amount;
}
function _update(uint256 _reserve0, uint256 _reserve1) private {
reserve0 = _reserve0;
reserve1 = _reserve1;
}
function swap(address _tokenIn, uint256 _amountIn)
external
returns (uint256 amountOut)
{
require(
_tokenIn == address(token0) || _tokenIn == address(token1),
"invalid token"
);
require(_amountIn > 0, "amount in = 0");
bool isToken0 = _tokenIn == address(token0);
(IERC20 tokenIn, IERC20 tokenOut, uint256 reserveIn, uint256 reserveOut)
= isToken0
? (token0, token1, reserve0, reserve1)
: (token1, token0, reserve1, reserve0);
tokenIn.transferFrom(msg.sender, address(this), _amountIn);
/*
How much dy for dx?
xy = k
(x + dx)(y - dy) = k
y - dy = k / (x + dx)
y - k / (x + dx) = dy
y - xy / (x + dx) = dy
(yx + ydx - xy) / (x + dx) = dy
ydx / (x + dx) = dy
*/
// 0.3% fee
uint256 amountInWithFee = (_amountIn * 997) / 1000;
amountOut =
(reserveOut * amountInWithFee) / (reserveIn + amountInWithFee);
tokenOut.transfer(msg.sender, amountOut);
_update(
token0.balanceOf(address(this)), token1.balanceOf(address(this))
);
}
function addLiquidity(uint256 _amount0, uint256 _amount1)
external
returns (uint256 shares)
{
token0.transferFrom(msg.sender, address(this), _amount0);
token1.transferFrom(msg.sender, address(this), _amount1);
/*
How much dx, dy to add?
xy = k
(x + dx)(y + dy) = k'
No price change, before and after adding liquidity
x / y = (x + dx) / (y + dy)
x(y + dy) = y(x + dx)
x * dy = y * dx
x / y = dx / dy
dy = y / x * dx
*/
if (reserve0 > 0 || reserve1 > 0) {
require(
reserve0 * _amount1 == reserve1 * _amount0, "x / y != dx / dy"
);
}
/*
How much shares to mint?
f(x, y) = value of liquidity
We will define f(x, y) = sqrt(xy)
L0 = f(x, y)
L1 = f(x + dx, y + dy)
T = total shares
s = shares to mint
Total shares should increase proportional to increase in liquidity
L1 / L0 = (T + s) / T
L1 * T = L0 * (T + s)
(L1 - L0) * T / L0 = s
*/
/*
Claim
(L1 - L0) / L0 = dx / x = dy / y
Proof
--- Equation 1 ---
(L1 - L0) / L0 = (sqrt((x + dx)(y + dy)) - sqrt(xy)) / sqrt(xy)
dx / dy = x / y so replace dy = dx * y / x
--- Equation 2 ---
Equation 1 = (sqrt(xy + 2ydx + dx^2 * y / x) - sqrt(xy)) / sqrt(xy)
Multiply by sqrt(x) / sqrt(x)
Equation 2 = (sqrt(x^2y + 2xydx + dx^2 * y) - sqrt(x^2y)) / sqrt(x^2y)
= (sqrt(y)(sqrt(x^2 + 2xdx + dx^2) - sqrt(x^2)) / (sqrt(y)sqrt(x^2))
sqrt(y) on top and bottom cancels out
--- Equation 3 ---
Equation 2 = (sqrt(x^2 + 2xdx + dx^2) - sqrt(x^2)) / (sqrt(x^2)
= (sqrt((x + dx)^2) - sqrt(x^2)) / sqrt(x^2)
= ((x + dx) - x) / x
= dx / x
Since dx / dy = x / y,
dx / x = dy / y
Finally
(L1 - L0) / L0 = dx / x = dy / y
*/
if (totalSupply == 0) {
shares = _sqrt(_amount0 * _amount1);
} else {
shares = _min(
(_amount0 * totalSupply) / reserve0,
(_amount1 * totalSupply) / reserve1
);
}
require(shares > 0, "shares = 0");
_mint(msg.sender, shares);
_update(
token0.balanceOf(address(this)), token1.balanceOf(address(this))
);
}
function removeLiquidity(uint256 _shares)
external
returns (uint256 amount0, uint256 amount1)
{
/*
Claim
dx, dy = amount of liquidity to remove
dx = s / T * x
dy = s / T * y
Proof
Let's find dx, dy such that
v / L = s / T
where
v = f(dx, dy) = sqrt(dxdy)
L = total liquidity = sqrt(xy)
s = shares
T = total supply
--- Equation 1 ---
v = s / T * L
sqrt(dxdy) = s / T * sqrt(xy)
Amount of liquidity to remove must not change price so
dx / dy = x / y
replace dy = dx * y / x
sqrt(dxdy) = sqrt(dx * dx * y / x) = dx * sqrt(y / x)
Divide both sides of Equation 1 with sqrt(y / x)
dx = s / T * sqrt(xy) / sqrt(y / x)
= s / T * sqrt(x^2) = s / T * x
Likewise
dy = s / T * y
*/
// bal0 >= reserve0
// bal1 >= reserve1
uint256 bal0 = token0.balanceOf(address(this));
uint256 bal1 = token1.balanceOf(address(this));
amount0 = (_shares * bal0) / totalSupply;
amount1 = (_shares * bal1) / totalSupply;
require(amount0 > 0 && amount1 > 0, "amount0 or amount1 = 0");
_burn(msg.sender, _shares);
_update(bal0 - amount0, bal1 - amount1);
token0.transfer(msg.sender, amount0);
token1.transfer(msg.sender, amount1);
}
function _sqrt(uint256 y) private pure returns (uint256 z) {
if (y > 3) {
z = y;
uint256 x = y / 2 + 1;
while (x < z) {
z = x;
x = (y / x + x) / 2;
}
} else if (y != 0) {
z = 1;
}
}
function _min(uint256 x, uint256 y) private pure returns (uint256) {
return x <= y ? x : y;
}
}
interface IERC20 {
function totalSupply() external view returns (uint256);
function balanceOf(address account) external view returns (uint256);
function transfer(address recipient, uint256 amount)
external
returns (bool);
function allowance(address owner, address spender)
external
view
returns (uint256);
function approve(address spender, uint256 amount) external returns (bool);
function transferFrom(address sender, address recipient, uint256 amount)
external
returns (bool);
}